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Abstract. Continuous control, used on chaotic systems that bear some special symmetries, gives rise to
interesting generalized synchronization behaviors which include modification of signal amplitudes, and
trajectories of the system being controlled that reproduce the controller attractor in a region of phase space
out of the region where it is stable. Theoretical reasoning and computer simulations show how continuous
control methods can be used to obtain these generalized synchronization behaviors, and to tune the desired
degree of amplification or displacement. Moreover it is shown that these behaviors can be asymptotically
stable, and very robust against external noise and mismatches in the controlling arrangement.

PACS. 05.45.+b Theory and models of chaotic systems

1 Introduction

The study of chaotic driving has emerged, during the last
years, as an object of major attention in the field of study
of the theories and models of chaotic systems. The situa-
tions considered are those in which a chaotic system, called
the drive, provides a signal which acts on another chaotic
system, called the response. A significative contribution
has been the report by Pecora and Carroll [1] of a driving
method under which two identical chaotic systems may be
synchronized. This means that the distance between the
two systems in phase space converges to zero when one
of them acts as the drive and the other as the response.
Several authors have proposed modifications of the Pec-
ora and Carroll method for specific purposes [2–5], while
others have proposed to use control of chaos techniques as
an alternative to the Pecora and Carroll and related syn-
chronization methods. In particular, Ding and Ott [6] and
Kapitaniak [7] have presented generalizations of an idea
for continuous control of chaos, proposed by Pyragas [8],
for the aim of synchronizing chaotic systems. Continuous
control methods have proven to be useful to achieve syn-
chronization in a variety of experimental systems which
include electric circuits [9], diode resonators [10], and an
yttrium iron garnet film in ferromagnetic resonance [11].
Moreover there are attempts to apply them to the theo-
retical analysis of blocking phenomena in meteorological
systems [12].

More recently the present author [13], using the orig-
inal Pecora and Carroll driving scheme [1], has reported
the existence of two synchronization-like behaviors of a
response under nonlinear driving: the amplification (or re-
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duction) of the drive attractor, and its reproduction in a
region of phase space out of where the stable attractor
lies. The study of these phenomena under the Pecora and
Carroll method [13] has shown that: (i) these particular
behaviors are related to some special symmetries in the
systems involved, (ii) the degree of amplification or dis-
placement is determined by the systems initial conditions,
and (iii) the stability of the synchronization-like behavior
obtained is not asymptotic, but uniform. This has been
later observed in computer experiments by Mat́ıas et al.
[14] using the coupling method of their own [3] which is a
Pecora and Carroll like method too.

The change of size of the attractor or its displacement
in phase space appear promising as they enrich the possi-
bilities of chaotic driving as a tool for practical and scien-
tific applications, and for theoretical analysis. Therefore
their study will be expanded in the present article by con-
sidering the case of a continuous control method. It will be
shown here that amplification and displacement of chaotic
attractors can be obtained using continuous control, if the
symmetry properties quoted above are present, and that
the behaviors obtained differ from their counterparts un-
der Pecora and Carroll like methods in two significative
issues: (i) the degree of amplification or displacement can
be tuned from the synchronization arrangement, instead of
being given by the initial conditions, and (ii) the stability
of the response trajectories can be made to be asymptotic,
instead than uniform. Therefore these phenomena can be
seen as particular cases of the generalized synchronization
defined by Rulkov et al. [15] and studied by several au-
thors [16–20].

The contents of the paper are arranged as follows. In
Section 2, it is defined the type of symmetric chaotic sys-
tems that allow amplification and displacement, and in
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Section 3 schemes of continuous control to achieve asymp-
totically stable behaviors will be presented. Then follow
three sections which contain a numerical study of two par-
ticular models which illustrate the distinctive properties of
these generalized synchronization phenomena under con-
tinuous control. In Section 4, the systems studied are pre-
sented, and the stability of the generalized synchroniza-
tion behaviors is studied, in Section 5 it is shown how the
magnitude of the amplification or displacement observed
can be tuned, and in Section 6 it is studied the effect of
imperfections in the experimental arrangement on the be-
haviors observed. Finally, Section 7 includes a summary
of the results obtained and some concluding remarks.

2 Symmetric systems

Let us assume that we have a chaotic system that can be
described by a set of n variables, x = (x1, x2, ..., xn), with
a dynamical behavior governed by a set of n non-linear
autonomous differential equations

dx

dt
= f(x). (1)

When let to itself, the trajectory followed in phase space
will drop on a strange attractor which is a fractal set of
points bounded in some region of the n-dimensional phase
space.

In this article, it will be studied the case in which there
are some transformations of coordinates, TP, that act only
on some of the variables, w, leaving the remainder un-
changed. Therefore, the set of variables x is divided in
two subsets

x =

(
v
w

)
(2)

with respective dimensions l and m, being l + m = n,
so that the coordinate transformations act on the m co-
ordinates w, while the remainder v coordinates are not
affected. Then, the dynamical equation are rewritten as

dv

dt
= g(v,w) (3)

dw

dt
= h(v,w) (4)

being

f(x) =

(
g(v,w)

h(v,w)

)
. (5)

In particular, given this decomposition, the w subsystem
will be attracted to a set of points bounded in some region
of its m-dimensional subspace.

The set of transformations of coordinates TP (w)≡ w∗

have the following properties:

(i) All have the same functional form, being given each
particular transformation by the values of a set of pa-
rameters P = (P1, P2, ..., Pq) which are real numbers that

change continuously in a given interval, Pi ∈ [ai, bi], such
that 0 ∈ [ai, bi].

(ii) If the identity is denoted as I, then

lim
P →0

TP = I. (6)

(iii) They are continuous in the sense that

lim
|P−P′|→0

|TP(w) − TP′(w)|=0 (7)

for all points of the w subsystem attractor.

(iv) Under anyone of these transformations equations (4)
remain unchanged; i.e., the following equation holds

dw∗

dt
= h(v,w∗). (8)

Two particular transformations of that type will be stud-
ied here. I will call the first an amplitude transformation, it
is defined by T(A−1)(w) ≡ Aw, and depends on an ampli-
tude factor A which is a positive real number. The second
will be called displacement transformation, it is defined
by TD(w) ≡ w + D, and depends on the m components
of the translations vector, D.

3 Continuous control

In the method for synchronization of chaotic systems pro-
posed by Ding and Ott [6], the system described by vari-
ables v and w, and governed by equations (3, 4) is meant
to be the drive. The response system is described by vari-
ables v′ and w′ which are copies of v and w, and evolve
under the dynamical law

dv′

dt
= g′(w,v′,w′) (9)

dw′

dt
= h′(w,v′,w′) (10)

with w acting as the drive signal, and the functions g′

and h′ such that they become those of the drive when
both systems are synchronized; that is,

g′(w,v′,w′) → g(v,w) (11)

h′(w,v′,w′) → h(v,w) (12)

when v′ → v and w′ → w.
Possible choices for g′ and h′ are

g′(w,v′,w′) = g(v
′
,w′) + η̃ (w −w′) (13)

h′(w,v′,w′) = h(v
′
,w′) + γ̃ (w −w′) (14)

being γ̃ and η̃ matrices of adjustable parameters that mea-
sure the strength of the coupling between drive and re-
sponse. Under this particular selection of the functions
g′ and h′, this method is a generalization of the case of
synchronization of chaos studied by Kapitaniak [7], using
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the technique for control of chaos by means of continuous
self-controlling feed-back proposed by Pyragas [8].

If the same initial conditions are chosen for drive and
response, v′(0) = v(0) and w′(0) = w(0), the two systems
will evolve in synchrony in the sense that, v′(t) = v(t)
and w′(t) = w(t) for t > 0. For this synchronization to be
asymptotically stable, the largest conditional Lyapunov
exponent for the system evolving under equations (9, 10)
has to be negative. In this case, this conditional Lyapunov
exponent is defined by

Λ = lim
t→∞

1

t
ln
|δx(t)|

|δx(0)|
(15)

being δx ≡ |v′ − v| + |w′ −w| an infinitesimal distance
between the two systems.

A major advantage of this method is the availabil-
ity of practically infinite choices for the functions g′ and
h′. Combined with the possibility of setting the numeri-
cal values of the coupling parameters, this allows one to
obtain asymptotically stable synchronism for almost any
system. This possibility has proven to be feasible in the
context of the regular synchronization of chaotic systems
(∆x ≡ |x′ − x| → 0 ) in a variety of particular cases stud-
ied by different authors [6,7,21].

When dealing with chaotic systems bearing the sym-
metries described in Section 2, this control method can be
modified to obtain asymptotically stable amplifications of
a part of an attractor, or asymptotically stable motion of
the response in a region displaced from the stable attrac-
tor. To achieve this the system h′ has to be constructed
from the symmetric part of the non-linear system, and
the drive signal has to be w. Moreover TP has to enter
the definition of g′ and h′ in such a way that these func-
tions reduce to those of the drive when transitories have
fallen down; that is,

g′(w,v′,w′)→ g(v,w) (16)

h′(w,v′,w′)→ h[v, TP(w)] (17)

when v′ → v and w′ → TP(w) for a fixed P.
A possible arrangement can be obtained by a modi-

fication of a coupling scheme of the type given by equa-
tions (13, 14). Then, for the amplitude transformation, the
particular choice for g′ and h′ is modified to

g′(v,v′,w′) = g(v
′
,w′/α) + η̃ (α w −w′) (18)

h′(v,v′,w′) = h(v
′
,w′) + γ̃ (α w −w′) (19)

where α is a real and positive tuning parameter used to
select the degree of amplification which is measured by A.
In the same way, for the displacement transformation,a
particular proper choice will be

g′(v,v′,w′) = g(v′,w′ − ρ)+η̃ [(ρ+ w)−w′] (20)

h′(v,v′,w′) = h(v′,w′) + γ̃ [(ρ+ w)−w′] (21)

where ρ is a vector of tuning parameters used to select the
displacement vector D in the proper subspace. In practice,
there is no need to inject all the variables w of the drive

in the response. This will be shown in Sections 4–6 by
means of the study of some particular cases in which only
one of the components of one the matrices of coupling
parameters, η̃ or γ̃, is no null.

The comments given in the third paragraph of this
section for synchronization, can be directly translated
to amplification and displacement. In particular, if the
initial condition for the response is v′(0) = v(0) and
w′(0) = TP[w(0)], the two systems will evolve in a gener-
alized synchronization state in the sense that, v′(t) = v(t)
and w′(t) = TP[w(t)] for t > 0; and, if the largest con-
ditional Lyapunov exponent, Λ, is negative we can have
asymptotically stable amplification or displacement of the
attractor. Therefore, the stability properties in this case
will be determined by the maximum Lyapunov exponent
of the subsystem described by equations (9, 10) computed
for P = 0.

4 Systems studied and stability

An appropriate model to study the amplification is the
Lorenz model [22] described by

.

X = σ (Y −X) (22)
.

Y = (R− Z) X − Y (23)
.

Z = X Y −B Z (24)

because the equations for X and Y are invariant under
an amplitude transformation T(A−1)(X, Y ) ≡ (AX, AY ).
The particular response system studied here is

.

X ′ = σ (Y ′ −X ′) (25)
.

Y ′ = (R− Z ′) X ′ − Y ′ + γy,y (α Y − Y ′) (26)
.

Z ′ =
X ′ Y ′

α2
−B Z ′ (27)

being α a tuning parameter for the amplitude of the
response, and γy,y a single constant that measures the
stiffness of the coupling, and has to be chosen to obtain
asymptotically stable behavior. For simplicity, the nota-
tion γ ≡ γy,y will be used in the remainder of the paper.
The numerical results for this model have been obtained
for the parameter values σ = 16, R = 45.92, and B = 4,
using a fourth-order Runge-Kutta algorithm with a time
step of 0.003.

The displacement has been studied in the Double-
Scroll [23] which is given by:

.

X = α [Y −X − F (X)] (28)
.

Y = X − Y + Z (29)
.

Z = − β Y (30)

being

F (X) = bX +
1

2
(a− b)[|X + 1|+ |X − 1|]. (31)
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Fig. 1. Largest conditional Lyapunov exponent as a function
of the coupling parameter γ for the Lorenz model. The dashed
lines signal the borders between positive and negative expo-
nents.
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Fig. 2. Same that Figure 1 for the Double-Scroll and the cou-
pling parameter η.

The equations for X and Z are invariant under a trans-
formation TD(Z) ≡ Z + D; therefore, one may obtain a
displacement of the attractor in the Z direction using as
the response a system such as

.

X ′ = α [Y ′ −X ′ − F (X ′)] (32)
.

Y ′ = X ′ − Y ′ + (Z ′ − ρ) − ηy,z [(ρ+ Z)− Z ′] (33)
.

Z ′ = − β Y ′ (34)

being ρ the tuning parameter, and −ηy,z the stiffness ad-
justable parameter used to achieve asymptotically stable
behavior when the Z signal is injected in the response. In
the remainder of the article the simpler notation η ≡ −ηy,z
will be used. The results presented here have been ob-
tained for α = 10, β = 14.87, a = −1.27 and b = −0.68,
with a fourth-order Runge-Kutta algorithm with a time
step 0.02.

I have computed the largest conditional Lyapunov ex-
ponent, Λ, for these systems at the parameter values said
above. Because g′ and h′ have as additional parameters
the stiffness constants, γ and η, the conditional Lyapunov

exponents have to be dependent on these parameters. The
results obtained for Λ as a function of γ (for α = 1) and
of η (for ρ = 0), are displayed in Figure 1 for the Lorenz
model, and Figure 2 for the Double-Scroll. They show that
it is possible to find a threshold for the coupling parameter
above which one has a negative conditional Lyapunov ex-
ponent, and then asymptotically stable phenomena of am-
plification or displacement. This threshold holds for any
values of α or ρ, because of the invariance properties of
the equations of motion. In the remainder of the paper the
values of γ = 12.0 and η = 6.0, that warrant asymptotic
stability, will be used to study this type of driving.

5 Tuning the desired behavior

To observe the amplification of the attractor, in the Lorenz
model, and the displacement, in the Double-Scroll, the
equations of motion given in Section 4 have been inte-
grated in each case. Various sets of values of γ and α
for the Lorenz model, and of η and ρ for the Double-
Scroll, as well as different sets of values for the initial
conditions have been tested. The corresponding phenom-
ena have been monitored both, by means of plots of the
time evolution of the drive and response variables and by
parametric plots of the variables of the response versus
the variables of the drive. This last type of plots appear
as straight lines when both signals evolve in perfect syn-
chrony, the amplification of the signal, A, is measured by
the slope of the straight line, and the displacement, D,
by its ordinate in the origin. Representative plots of the
results obtained are given in Figures 3, 4, and 5.

The amplification of the X signal for the Lorenz at-
tractor for α = 5 is displayed in Figure 3a where it is
shown how, after a short transitory, the response trajec-
tory closely reproduces the drive signal amplified 5 times.
The same can be seen in the parametric plot (Fig. 4) for
the Y signal. A case of displacement of the attractor for
the Double-Scroll, using ρ = +10 is shown in Figures 3b
and 5. The expected behavior is appreciated in both plots
after transitories die. The degree of amplification or dis-
placement, in both cases, is controlled by the values of α or
ρ. The main effect of initial conditions is on the duration
and complexity of the transitories that precede the settle-
ment of the amplified or displaced evolution. There may
be, however, some additional influence of the initial con-
ditions. This is because initial conditions for the response
that are far form the trajectory tuned to be followed may
give rise to unstable, divergent evolutions of the response.
This was found to happen in the Lorenz model. Therefore,
for these systems, the initial conditions for the response
have to be chosen in a region of phase space around the
one where the response is expected to evolve. In practice,
this is not an stringent condition.

In Figure 6 it is illustrated how the continuous con-
trol method is efficient to obtain the desired amplification
or displacement of the attractor. There the dependence
of A with α, for the Lorenz model, and D with ρ for the
Double-Scroll, obtained in a series of numerical integra-
tions of the equations of motion with initial condition
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Fig. 3. Amplification and displacement obtained by means of
continuous control. (a) Time evolution of the X signal for the
drive (dashed line) and the response (solid line) for the Lorenz
model, using γ = 12 and α = 5 and (b) time evolution of the Z
signal for the drive (dashed line) and the response (solid line)
for the Double-Scroll, using η = 6.0 and ρ = 10.
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Fig. 4. Parametric plot of the Y signal for the Lorenz model,
using γ = 12 and α = 5.

randomly choose for each point are displayed. For the
Lorenz model, each point in Figure 6 represents the value
observed for A for an evolution computed for a given value
or the parameter α. The initial conditions used for any
point are unique to this point: (X0, Y0, Z0) was randomly
chosen as a point in the stable attractor for the drive,
and (X ′0, Y

′
0 , Z

′
0) was randomly selected within a paral-

lelepiped centered at the point (0, 0,∆Z) and with edges
of length α2∆X, α2∆Y and 2∆Z, being ∆X, ∆Y and
∆Z the amplitudes of the fluctuations of the signals X,
Y and Z of the drive system. For the Double-Scroll, each
point in Figure 6 represents the observed value for D for
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18.0

X
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Z
’

Z’−Z

X’−X

Fig. 5. Parametric plots of theX and Z signals for the Double-
Scroll, using η = 6.0 and ρ = 10.
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Fig. 6. Dependence of the amplification, A, or displacement,
D, effectively obtained for the response as functions of the
turning parameters, α or ρ, used in each case. In this figure the
function A(α) is indicated by circles, and the function D(ρ) is
indicated by squares.

a single evolution made for a given value of the parameter
ρ. The initial conditions for each run have been chosen
in a similar manner: (X0, Y0, Z0) as a point in the stable
attractor for the drive, and (X ′0, Y

′
0 , Z

′
0) within a paral-

lelepiped centered at the unstable fixed point (0, 0, 0) and
with edges of length 2∆X, 2∆Y and 2∆Z, with ∆X, ∆Y
and ∆Z the amplitudes of the fluctuations of the drive
signals. The points aligned along straight lines illustrate a
distinctive feature of the continuous control method: the
degree of amplification, A, or the displacement, D, ob-
tained can be selected as desired by choosing appropriate
values for the turning parameters, α or ρ. Once these pa-
rameters are fixed on, the response trajectory, after some
transients die, will reproduce a copy of the drive attrac-
tor amplified by a factor A = α, or displaced an amount
D = ρ in the Z direction.
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Fig. 7. (a) Drive attractor trajectory, (b) trajectory followed
by the response and (c) parametric plot for the Lorenz model
under a noisy continuous control drive scheme. The observa-
tional time window spans 10000 time steps and the parameters
used are γ = 12, α = 2, and σY = 0.10

6 External noise and parameter mismatch

To study the robustness of the response trajectories in the
presence of external noise, a series of time evolutions have
been performed adding a Gaussian white noise to the drive
signal. Therefore, the signal effectively injected in the re-
sponse was w(t)+ δt, being δt a small quantity whose val-
ues are randomly distributed along a Gaussian function
centered at zero. The strength of this noise is measured
by the dispersion in the distribution of δt, σ, which, mea-
sured in units of the amplitude of the controlling signal, is
the control parameter in this study. Plots of the response
trajectories and parametric plots are displayed in Figure 7
for the Lorenz model and in Figure 8 for the Double-Scroll.
For both models, bellow certain level of noise, one always
obtains a response trajectory that accurately reproduces
the drive attractor amplified (shrunken) or displaced, and
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Fig. 8. (a) Trajectories followed by the response, and (b)
parametric plots for the Double-Scroll under a noisy contin-
uous control drive scheme. The observational time window
spans 10000 time steps and the parameters used are η = 6.0,
ρ = −12, and σZ = 0.1.

10−2 10−1 100

σ
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Fig. 9. Effect of external noise in the accuracy of the synchro-
nization when the continuous control of chaos method is used
measured by its effect on the correlation coefficient, r, of the
fit to a straight line of X′ = X′(X) for amplification (circles)
and Z′ = Z′(Z) for displacement (squares).

as that level of noise is increased the response trajectories
and parametric plots gradually become blurred versions of
the free noise case as correspond to a case of asymptotic
stability. It is to be noted that the noise level in Figures 7
and 8 is quite large (10 per cent of the amplitude of the
drive signal), what illustrates how efficient a continuous
control method can be to maintain the response system
close to the desired trajectory. To have an overall view
of the effect of noise I have computed the correlation co-
efficient, for the fit of straight lines to the appropriate
parametric functions, X ′ = X ′(X) for the Lorenz Model
and Z ′ = Z ′(Z) for the Double-Scroll, for the different
values of the noise amplitude. The results, shown in Fig-
ure 9 illustrate how a perfect fit becomes gradually lost
only when the noise amplitude overcomes a size as large
as 0.1 of the amplitude of the signal.

Some calculations have been done to study the effect
of the parameter mismatch between drive and response.
This is measured by εp ≡ (p′ − p)/p, being p and p′ the
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parameter values of the drive and the response, respec-
tively. In this case one obtains a response behavior that
smoothly evolves from the one corresponding to εp = 0, to
another in which the response trajectory is still amplified
or displaced, but somehow deformed. A couple of exam-
ples of response trajectories for large parameter mismatch
are displayed in Figure 10. For the Lorenz model and σ-
parameter mismatch one obtains (Fig. 10a) a copy of the
attractor which is an amplified and deformed version of
the well-known Lorenz attractor (it appears compressed
in the direction perpendicular to the main diagonal). For
the Double-Scroll, shown here for α parameter mismatch
(Fig. 10b), one obtains that the response trajectory is such
that Z ′ reproduces a displaced copy of Z, while X ′ evolves
in a complicated way giving rise to a whole response tra-
jectory that looks like a (displaced) deterministic attractor
that resembles an split version of the original.

In the particular implementations of the control
scheme given by equations (25–27) for the Lorenz model
and by equations (32–34) for the Double-Scroll, new pa-
rameters have been included to fulfill the conditions im-
posed by equations (16, 17). These are µ ≡ 1/α2 in the

term X ′Y ′ of equation (27), (i.e.,
.

Z ′ = µX ′ Y ′ − B Z ′)
and ν ≡ ρ in the term (Z ′ − ρ) of equation (33) (i.e.,
.

Y ′ = X ′ − Y ′ + (Z ′ − ν) − ηy,z{(ρ + Z) − Z ′}). This
introduces a new type of parameter mismatch that, in a
practical device, may occur within the response subsys-
tem. It is measured by εp ≡ (p′−p)/p, being p the value of
the parameter for zero mismatch and p′ its actual value.
I have performed tests as those described in the above
paragraph for these new parameters µ and ν. The results
show that such mismatches do not compromise the syn-
chronization with amplification or displacement. This is
illustrated in Figure 11, where there are displayed para-
metric plots for α = 2 and ten percent mismatch in µ
(εµ = 0.1) for the Lorenz model, and ρ = 10 and one hun-
dred per cent mismatch in ν (εν = 1.0) for the Double-
Scroll. For amplification, the effect of such mismatch is
qualitatively similar to the effect of external noise shown
in Figure 7c. For displacement, ν competes against ρ to
modify the degree of displacement in an amount that is
one order of magnitude smaller then εν , which has been
chosen very large in Figure 11b to make its effect percep-
tible. Anyway, these results, together with those in the
above paragraph, show that the response behavior is sta-
ble against parameter mismatch.

7 Concluding remarks

In summary, it has been shown that by using continuous
control on chaotic systems that exhibit invariance prop-
erties under continuous transformations, one can obtain
partial amplification of the attractor or displacement of
it to a region of phase space where the original system
is not stable. The distinctive features of these phenom-
ena under continuous control are: (i) the stability of such
orbits can be made to be asymptotic; therefore, one can
properly talk about generalized synchronization [15], and
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Fig. 10. Trajectory followed by the response for the (a) Lorenz
system, under continuous control and large σ parameter mis-
match (εσ = 1), and (b) for the Double-Scroll under continuous
control and large α parameter mismatch (εα = 1). Both plots
are for times when the transitories have died out.

(ii) the degree of amplification and displacement can be
tuned by adjusting the controlling scheme. A numerical
study of these phenomena has been performed for two
mathematical models, exhibiting one of them the sym-
metry appropriate for amplification (the Lorenz model),
and the other the symmetry appropriate for displacement
(the Double-Scroll). For continuous control, and perfect
coupling, it has been show that it is possible to design
driving schemes that allow to obtain asymptotically stable
behavior with negative conditional Lyapunov exponents.
The degree of amplification and displacement was indeed
found tunable by changes in the parameters of the con-
trolling arrangement. Computer simulations under noisy
situations or system parameter mismatch have shown that
the behavior of the response is particularly robust against
imperfections in the control arrangement. This supports
the idea that such phenomena are able to be reproduced
in the laboratory or observed in nature.

The behaviors of chaotic systems under continuous
control studied in the present article are different than
the synchronization behavior that has been widely stud-
ied in the literature. Therefore, they represent an enrich-
ment of the tools available in several fields of science and
technology. Technical applications of the ideas and results
presented in this paper might occur in the field of com-
munications [24], where there are problems that have to
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Fig. 11. Parametric plots for (a) the Lorenz model for α = 2
and µ parameter mismatch (εµ = 0.1), and (b) for the Double-
Scroll for ρ = 10 and ν parameter mismatch (εν = 1.0). The
broken lines are guides to the eye. Both plots are for times
when the transitories have died out.

be addressed in issues such as signal attenuation along a
line [25], and safety [26,27].The results presented here on
controlling the amplitude or position of chaotic attractors
might allow new approaches to these issues.

Neurobiology appears as a possible field for applica-
tion too. For example, the analyses of multigrid elec-
troencephalograms performed on several neural systems
has demonstrated two relevant facts [28–32]: (i) the lo-
cal electrical activity can be described by means of low
dimensional chaotic systems, and (ii) the global behavior
is characterized by spatial patterns, which are defined by
the different amplitudes of the signals measured at each
electrode. The results presented in this article appear as
possible tools to model behaviors of that kind by means of
networks of low-dimensional chaotic systems bearing the
symmetries appropriate to exhibit amplification.

This research has been supported by DGICYT, through
project PB96-0392.
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